
Terminale NSI — Année 2025/2026 M. Déhais

Structures de données Chap 04
Algorithmique des

graphes

4.1 Parcours en largeur

[Principe du parcours en largeur

On souhaite explorer un graphe à partir d’un sommet de départ, en visitant les sommets par cercles
successifs autour de ce point de départ.
Pour organiser cette exploration, on utilise :

— une file : les sommets sont traités dans l’ordre où ils sont découverts ;

— un ensemble de sommets marqués : dès qu’un sommet est découvert, on le marque pour
éviter de le visiter plusieurs fois.

À chaque étape :

1. on retire le premier sommet de la file;

2. on marque tous ses voisins;

3. chaque voisin encore non marqué est marqué puis ajouté à la fin de la file.

Ô Algorithme — Parcours en largeur d’un graphe

Input : Un graphe G donné par une liste de voisins, un sommet de départ s

Output : Les sommets de G visités dans l’ordre du parcours
Créer une file vide F

Créer un ensemble vide M (sommets marqués)
Ajouter s à la file F

Ajouter s à l’ensemble M

Tant que la file F n’est pas vide :
Retirer le premier sommet u de la file F

Traiter le sommet u (effectuer ce qu’on souhaite sur u)
Pour chaque voisin v de u :

Si v /∈M alors
Ajouter v à l’ensemble M

Ajouter v à la fin de la file F

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 1

Terminale NSI — Année 2025/2026 M. Déhais

4.1.1 Exemple sur le graphe de la Terre du Milieu

¨ Schéma — Le parcours en largeur depuis le sommet A sur le graphe de la Terre du Milieu

Étape 0

A

E

F

B

C

D

File : [A]
Marqués : {A}

Traité : —

Étape 1

A

E

F

B

C

D

File : [E, F]
Marqués : {A,E,F}

Traité : A

Étape 2

A

E

F

B

C

D

File : [F, B]
Marqués : {A,E,F,B}

Traité : E

Étape 3

A

E

F

B

D

C

File : [B, D]
Marqués : {A,E,F,B,D}

Traité : F

Étape 4

A

E

F

B

C

D

File : [D, C]
Marqués : {A,E,F,B,D,C}

Traité : B

Étape 5

A

E

F

B

D

C

File : [C]
Marqués : {A,E,F,B,D,C}

Traité : D

Étape 6

A

E

F

B

C

D

File : []
Marqués : {A,E,F,B,D,C}

Traité : C

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 2

Terminale NSI — Année 2025/2026 M. Déhais

4.1.2 Exercice : Parcours en largeur avec tableau à compléter

Exercice 1 — Parcours en largeur à la main : tableau de suivi

On considère le graphe non orienté suivant. On lance un parcours en largeur depuis le sommet S.

S

A

B

C

D

E

F

G

Convention : quand on parcourt les voisins d’un sommet, on les considère dans l’ordre alphabé-
tique.

1) Compléter la table de suivi du parcours en largeur ci-dessous.

Étape Sommet
retiré

Nouveaux
sommets
ajoutés

File après ajout Marqués

0 —- [S] {S}

1

2

3

4

5

6

7

8

9

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 3

Terminale NSI — Année 2025/2026 M. Déhais

4.2 Parcours en profondeur

[Principe du parcours en profondeur

On souhaite explorer un graphe à partir d’un sommet de départ, en visitant les sommets en allant
le plus loin possible avant de revenir en arrière.
Pour organiser cette exploration, on utilise :

— une pile : le dernier sommet découvert est traité en priorité;

— un ensemble de sommets marqués : dès qu’un sommet est découvert, on le marque pour
éviter les visites multiples.

Le principe est le suivant :

1. on empile le sommet de départ ;

2. tant que la pile n’est pas vide :

— on dépile un sommet;

— on explore immédiatement l’un de ses voisins non marqués;

— si un voisin non marqué existe, on l’empile et on continue depuis lui ;

— sinon, on revient en arrière.

Ce parcours correspond naturellement à une exploration récursive.

Ô Algorithme — Parcours en profondeur d’un graphe

Input : Un graphe G donné par une liste de voisins, un sommet de départ s

Output : Les sommets de G visités dans l’ordre du parcours
Créer une pile vide P

Créer un ensemble vide M (sommets marqués)
Empiler s dans la pile P

Ajouter s à l’ensemble M

Tant que la pile P n’est pas vide :
Dépiler le sommet u de la pile P

Traiter le sommet u

Pour chaque voisin v de u (dans l’ordre choisi) :
Si v /∈M alors

Ajouter v à l’ensemble M

Empiler v dans la pile P

Quitter la boucle des voisins

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 4

Terminale NSI — Année 2025/2026 M. Déhais

4.2.1 Exemple sur le graphe de la Terre du Milieu

¨ Schéma — Le parcours en profondeur depuis le sommet A sur le graphe TdM

Étape 0

A

E

F

B

C

D

Pile : [A]
Marqués : {A}

Traité : —

Étape 1

A

E

F

B

C

D

Pile : [E, F]
Marqués : {A,E,F}

Traité : A

Étape 2

A

E

F

B

C

D

Pile : [B, F]
Marqués : {A,E,F,B}

Traité : E

Étape 3

A

E

B

F

C

D

Pile : [C, D, F]
Marqués : {A,E,F,B,C,D}

Traité : B

Étape 4

A

E

B

C

DF

Pile : [D, F]
Marqués : {A,E,F,B,C,D}

Traité : C

Étape 5

A

E

B

C

DF

Pile : [F]
Marqués : {A,E,F,B,C,D}

Traité : D

Étape 6

A

E

F

B

C

D

Pile : []
Marqués : {A,E,F,B,C,D}

Traité : F

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 5

Terminale NSI — Année 2025/2026 M. Déhais

4.2.2 Exercice : Parcours en profondeur avec tableau à compléter

Exercice 2 — Parcours en profondeur à la main

On considère le même graphe que précédemment.On lance un parcours en profondeur depuis le
sommet S.

S

A

B

C

D

E

F

G

Convention : les voisins sont explorés dans l’ordre alphabétique.

1) Compléter la table de suivi du parcours en profondeur.

Étape Sommet
dépilé

Sommets
empilés

Pile après empile-
ment

Marqués

0 —- [S] {S}

1

2

3

4

5

6

7

8

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 6

Terminale NSI — Année 2025/2026 M. Déhais

4.3 Algorithme de Dijkstra

[Principe de l’algorithme de Dijkstra

Dans un graphe pondéré, chaque arête possède un poids (distance, coût, durée, etc.).
L’objectif de l’algorithme de Dijkstra est de calculer :

les plus courtes distances depuis un sommet de départ

et, grâce à un tableau de prédécesseurs, de pouvoir retracer un plus court chemin.

L’algorithme manipule deux informations :

— dist[v] : meilleure distance connue (provisoire) de s vers v ;

— pred[v] : le sommet précédent sur le meilleur chemin connu vers v.

À chaque étape :

1. on choisit le sommet non visité avec la plus petite distance dist ;

2. on « fixe » sa distance (elle devient définitive) ;

3. on tente d’améliorer les distances de ses voisins (c’est la relaxation) : si on trouve un chemin
plus court vers un voisin v, on met à jour

dist[v]← dist[u] + poids(u, v) et pred[v]← u.

. Attention

Dijkstra fonctionne si tous les poids sont positifs ou nuls. Avec des poids négatifs, l’algorithme
peut se tromper.

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 7

Terminale NSI — Année 2025/2026 M. Déhais

Ô Algorithme — Dijkstra

Input : Un graphe pondéré g (liste d’adjacence), un sommet de départ s

Output : dist (distances minimales), pred (prédécesseurs pour reconstruire les chemins)
dist← dictionnaire des distances (initialisées à +∞)
pred← dictionnaire des prédécesseurs (initialisés à ∅)
dist[s]← 0
sommets_visites← []

Tant que tous les sommets n’ont pas été visités :
sommet_courant← None

dist_min← +∞

Pour tous les sommets sommet de g :
Si sommet n’est pas visité et dist[sommet] < dist_min alors

sommet_courant← sommet

dist_min← dist[sommet]

Pour tous les sommets adjacents voisin de g[sommet_courant] :
nouvelle_dist← dist[sommet_courant] + g[sommet_courant][voisin]
Si nouvelle_dist < dist[voisin] alors

dist[voisin]← nouvelle_dist

pred[voisin]← sommet_courant

Ajouter sommet_courant à sommets_visites

Renvoyer dist et pred

ò Reconstruire un chemin
Pour retrouver un plus court chemin de s vers un sommet t :

— on part de t ;

— on remonte grâce à pred[t], puis pred[pred[t]], etc. ;

— on s’arrête quand on arrive à s (ou quand on rencontre ∅ si t est inaccessible).

Le chemin obtenu est à l’envers : on l’inverse pour obtenir le chemin de s vers t.

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 8

Terminale NSI — Année 2025/2026 M. Déhais

4.3.1 Exemple détaillé

¨ Schéma — Dijkstra : pas à pas

Étape 0

S

B C

A

D

3

12

2

5 1

2

4

Étape Traité d(S) pred d(B) pred d(C) pred d(A) pred d(D) pred

0 — 0 ∅ ∞ ∅ ∞ ∅ ∞ ∅ ∞ ∅

Étape 1

S

B C

A

D

3

12

2

5 1

2

4

Étape Traité d(S) pred d(B) pred d(C) pred d(A) pred d(D) pred

1 S 0 ∅ 3 S ∞ ∅ 12 S ∞ ∅

Étape 2

S

B C

A

D

3

12

2

5 1

2

4

Étape Traité d(S) pred d(B) pred d(C) pred d(A) pred d(D) pred

2 B 0 ∅ 3 S 5 B 8 B ∞ ∅

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 9

Terminale NSI — Année 2025/2026 M. Déhais

Étape 3

S

B C

A

D

3

12

2

5 1

2

4

Étape Traité d(S) pred d(B) pred d(C) pred d(A) pred d(D) pred

3 C 0 ∅ 3 S 5 B 6 C 9 C

Étape 4

S

B C

A

D

3

12

2

5 1

2

4

Étape Traité d(S) pred d(B) pred d(C) pred d(A) pred d(D) pred

4 A 0 ∅ 3 S 5 B 6 C 8 A

Étape 5

S

B C

A

D

3

12

2

5 1

2

4

Étape Traité d(S) pred d(B) pred d(C) pred d(A) pred d(D) pred

5 D 0 ∅ 3 S 5 B 6 C 8 A

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 10

Terminale NSI — Année 2025/2026 M. Déhais

ò Retrouver le plus court chemin de A vers S

À la fin de l’étape 3, on a :

dist(A) = 6 et pred(A) = C, pred(C) = B, pred(B) = S.

Donc un plus court chemin de S vers A est :

S → B → C → A.

4.3.2 Application

Exercice 3 — Dijkstra à la main

On considère le graphe pondéré ci-dessous. On applique Dijkstra depuis S.

S

A

B

C

D

E

6

2

3

4

2

3

6

1

1) Compléter la table ci-dessous (distances et prédécesseurs).

Étape Traité d(S) pred d(B) pred d(C) pred d(A) pred d(D) pred

0 — 0 ∅ ∞ ∅ ∞ ∅ ∞ ∅ ∞ ∅
1
2
3
4
5

2) Donner un plus court chemin de S vers E

Thématique 2 : Structures de données | Chapitre 4 : Algorithmique des graphes 11

	Thématique 2 : Structures de données
	Thématique 2 : Structures de données
	Chapitre 4 : Algorithmique des graphes
	Chapitre 4 : Algorithmique des graphes
	Parcours en largeur
	Exemple sur le graphe de la Terre du Milieu
	Exercice : Parcours en largeur avec tableau à compléter

	Parcours en profondeur
	Exemple sur le graphe de la Terre du Milieu
	Exercice : Parcours en profondeur avec tableau à compléter

	Algorithme de Dijkstra
	Exemple détaillé
	Application

