
Terminale NSI — Année 2025/2026 M. Déhais

Langage et

Algorithmique
Chap 03

La complexité d’un
algorithme

3.1 Pourquoi parler de complexité?

[Comment mesurer l’efficacité d’un algorithme

Lorsqu’on conçoit un algorithme, une question naturelle se pose : est-il efficace?
Deux algorithmes peuvent résoudre exactement le même problème, mais avec des temps d’exécu-
tion très différents dès que la taille des données augmente.
Quand on dit qu’un algorithme est rapide ou lent, on veut une mesure qui ne dépende pas :

— du modèle de processeur,

— du langage,

— de l’ordinateur utilisé,

— de l’optimisation du compilateur/interpréteur.

On cherche donc une mesure abstraite, basée sur le nombre d’opérations effectuées, en fonction
de la taille des données (notée en général n).

Exemple 1 — Comparer deux algorithmes

On veut chercher un nombre dans une liste de n valeurs déjà triée :

— Recherche séquentielle : on regarde 1 à 1 (n comparaisons).

— Recherche dichotomique : on coupe en deux à chaque étape (environ log2(n) comparai-
sons).

Même si une machine est 10 fois plus rapide, log2(n) reste beaucoup plus petit que n quand n de-
vient grand. On a donc accès à une mesure objective de l’efficacité d’un algorithme, qui ne dépend
pas du temps d’éxécution.

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 1

Terminale NSI — Année 2025/2026 M. Déhais

3.2 Quest-ce que la complexité?

Définition 1 — Complexité temporelle

La complexité temporelle d’un algorithme (et donc d’un programme) mesure le nombre d’opé-
rations qu’il effectue en fonction de la taille de l’entrée n.
Elle permet d’estimer le temps d’exécution de l’algorithme, indépendamment de la machine ou
du langage utilisé.

Définition 2 — Complexité spatiale

La complexité spatiale d’un algorithme mesure la quantité de mémoire supplémentaire utilisée
en fonction de la taille de l’entrée n.
Elle prend en compte :

— les variables temporaires;

— les structures de données auxiliaires;

— la mémoire utilisée par les appels récursifs.

[Temps contre mémoire
Un algorithme peut être :

— rapide mais gourmand en mémoire;

— lent mais peu coûteux en mémoire;

— ou chercher un compromis entre les deux.

Le choix d’un algorithme dépend donc à la fois du temps disponible et de la mémoire utilisable.
Dans le reste de ce chapitre, nous évoquons uniquement la complexité temporelle.

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 2

Terminale NSI — Année 2025/2026 M. Déhais

3.3 Taille de l’entrée et modèle de coût

Définition 3 — Taille d’entrée

Pour pouvoir avoir une mesure de la complexité d’un algorithme, il faut être en mesure de décrire
"combien de données" il reçoit, on définit pour cela la taille de l’entrée (souvent notée n).

Exemple 2 — Tailles d’entrée

— Pour une liste : la taille de l’entrée n = est le nombre d’éléments,

— Pour une chaîne de caractère : la taille de l’entrée n = est le nombre de caractères,

— Pour une matrice (grille) de dimension n × n : la taille de l’entrée n = est souvent donné par
le nombre de cases, donc n2.

Définition 4 — Modèle d’opérations élémentaires

Afin de pouvoir comparer deux algorithmes différents de manière objective, on se donne un mo-
dèle de coût.
Cela consiste à décider quelles actions sont considérées comme élémentaires, c’est-à-dire ayant
un coût constant, puis à compter combien de fois ces opérations sont exécutées en fonction de la
taille de l’entrée. Les plus classiques sont :

— une affectation (x = ...),

— un accès à un élément (tab[i]),

— une comparaison (<, >, ==),

— une opération arithmétique simple (+, −, ×),

— un test de condition (if).

Exercice 1 — Identifier la taille d’entrée

Pour chaque situation, proposer une taille d’entrée n pertinente.

1. Un algorithme qui assure la correction orthographique d’un livre

2. Un algorithme qui inverse la couleur d’une image de 1920 × 1080 pixels.

3. Un algorithme qui travaille sur un arbre binaire parfait de hauteur h.

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 3

Terminale NSI — Année 2025/2026 M. Déhais

3.4 Compter des opérations

[Du code vers une fonction de coût

Pour étudier la complexité d’un algorithme, on cherche à estimer le nombre d’opérations élémen-
taires qu’il effectue en fonction de la taille de l’entrée, notée n.
On associe ainsi à l’algorithme une fonction T (n), qui représente le nombre d’opérations néces-
saires pour traiter une entrée de taille n. Dans un second temps, on simplifie cette fonction afin de
ne conserver que son ordre de grandeur lorsque n devient grand.

Définition 5 — Complexité linéaire

On dit qu’un algorithme a une complexité linéaire lorsque le nombre d’opérations est proportion-
nel à la taille de l’entrée n.
Autrement dit, si n double, le nombre d’opérations double également. Ce type de comportement
apparaît typiquement lorsqu’on parcourt une fois l’ensemble des données.

Exemple 3 — Boucle simple

Considérons :

1 s = 0
2 for i in range(n):

3 s = s + 1

On effectue :

— une initialisation (s = 0),

— puis n fois l’instruction s = s + 1.

Donc T (n) = n + 1 ce qui proportionnel à n, la complexité du programme précédent est donc
linéaire.

Exercice 2 — Compter et exprimer T (n)

On considère :

1 c = 0
2 for i in range(n):

3 c = c + 1

4 c = c + 1

1. Combien de fois la variable c est-elle incrémentée au sein d’un tour de boucle?

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 4

Terminale NSI — Année 2025/2026 M. Déhais

2. Donner une expression du nombre total d’incrémentations en fonction de n.

3. Quelle est donc la complexité du programme précédent?

Définition 6 — Croissance quadratique

On dit qu’un algorithme a une complexité quadratique lorsque le nombre d’opérations est pro-
portionnel au carré de la taille de l’entrée, c’est-à-dire à n2.
Ce comportement apparaît généralement lorsqu’on utilise deux boucles imbriquées parcourant
chacune n éléments.

Exemple 4 — Boucles imbriquées

1 c = 0
2 for i in range(n):

3 for j in range(n):

4 c = c + 1

La ligne c = c + 1 s’exécute n × n = n2 fois.
Donc T (n) = n2 + 1, donc le programme est de complexité quadratique car T (n) est de l’ordre de
n2.

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 5

Terminale NSI — Année 2025/2026 M. Déhais

Exercice 3 — Boucles imbriquées “triangle”

On considère :

1 c = 0
2 for i in range(n):

3 for j in range(i):

4 c = c + 1

1. Pour n = 5, compléter le tableau :

i nombre d’itérations de la boucle en j

0

1

2

3

4

2. En déduire le total d’incrémentations de c pour n = 5.

3. Donner une expression en fonction de n.

4. Conclure quant à la complexité du programme.

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 6

Terminale NSI — Année 2025/2026 M. Déhais

3.5 Meilleur cas, pire cas, cas moyen

Définition 7 — Meilleur cas, pire cas et cas moyen

Pour une taille d’entrée donnée n, le nombre d’opérations effectuées par un algorithme peut varier
selon la configuration des données.
On distingue alors :

— le meilleur cas : nombre minimal d’opérations possibles pour une entrée de taille n ;

— le pire cas : nombre maximal d’opérations possibles pour une entrée de taille n ;

— le cas moyen : nombre moyen d’opérations sur l’ensemble des entrées possibles de taille n.

Ces trois mesures sont des fonctions du type T (n), mais correspondent à des situations différentes.

[Interprétation

— Le meilleur cas correspond à une situation particulièrement favorable, mais rarement repré-
sentative.

— Le pire cas donne une garantie : l’algorithme ne fera jamais plus d’opérations que cette valeur.

— Le cas moyen est souvent plus réaliste, mais plus difficile à définir car il dépend d’hypothèses
sur les données.

Exemple 5 — Recherche séquentielle

On cherche une valeur x dans une liste tab de taille n.

— meilleur cas : x est au début ⇒ 1 comparaison;

— pire cas : x est à la fin ou absent ⇒ n comparaisons.

ò Pourquoi privilégier le pire cas?

En algorithmique, on s’intéresse souvent au pire cas car :

— il garantit un temps maximal d’exécution;

— il permet de comparer des algorithmes sans hypothèse sur les données;

— il évite les mauvaises surprises lorsque les données sont défavorables.

En ce qui nous concerne, la complexité est donc le plus souvent exprimée en pire cas.

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 7

Terminale NSI — Année 2025/2026 M. Déhais

Exercice 4 — Meilleur, pire et cas moyen : tester si une liste est triée

On considère l’algorithme suivant, qui teste si une liste tab de taille n est triée dans l’ordre croissant.

1 def est_triee(tab):
2 for i in range(len(tab)-1):

3 if tab[i] > tab[i+1]:

4 return False

5 return True

1. Donner le nombre de comparaison dans le meilleur cas.

2. Donner le nombre de comparaison dans le pire cas.

3. Cas moyen (modèle simplifié). On suppose que, pour une liste « au hasard », l’algorithme
rencontre en moyenne la première inversion au milieu de la liste.

Combien de comparaisons cela représente-t-il?

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 8

Terminale NSI — Année 2025/2026 M. Déhais

3.6 Notation O(·) : garder l’ordre de grandeur

Définition 8 — Notation O(·)

Lorsqu’on étudie la complexité d’un algorithme, on ne cherche pas une expression exacte du
nombre d’opérations, mais son comportement global lorsque la taille de l’entrée n devient
grande.
La notation O(·) permet de décrire cet ordre de grandeur. Dire que T (n) est en O(f(n)), ou T (n) ∈
O(f(n)), signifie, de manière informelle, que :

pour n suffisamment grand, le nombre d’opérations T (n) ne dépasse pas une constante
multipliée par f(n).

On néglige donc les constantes et les termes de plus bas degré, afin de se concentrer uniquement
sur la croissance dominante.

. Simplifier des expressions mathématiques

Pour obtenir une forme en O(·), on applique en général :

— on ignore les constantes multiplicatives (ex : 3n et 100n sont du même ordre) ;

— on ignore les termes de plus bas degré (ex : n2 + 10n + 3 est dominé par n2).

Exemple 6 — Simplifications typiques

T (n) = 7n + 12 ⇒ T (n) ∈ O(n)

T (n) = 3n2 + 2n + 100 ⇒ T (n) ∈ O(n2)

T (n) = 5 log2(n) + 200 ⇒ T (n) ∈ O(log n)

Exercice 5 — Passer en O(·)

Pour chaque fonction, donner une forme simplifiée en O(·).

1. T (n) = 3n log2(n) + 50n

2. T (n) = n2 + 5n log2(n) + 100

3. T (n) = n(n + 1)

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 9

Terminale NSI — Année 2025/2026 M. Déhais

4. T (n) = n2 + 106n

3.7 Ordres de grandeur classiques (à connaître)

[Échelle des complexités

Quand n grandit, voici des croissances typiques (de la plus favorable à la moins favorable) :

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(2n)

Interprétation :

— O(1) : constant (ne dépend pas de n),

— O(log n) : on “divise par 2” à chaque étape (dichotomie),

— O(n) : on parcourt une fois l’entrée,

— O(n2) : double boucle sur n,

— O(2n) : croissance exponentielle, qui dépasse très vite les capacités de calcul.

Exercice 6 — Classer des algorithmes

Associer chaque situation à un ordre de grandeur plausible (O(1), O(log n), O(n), O(n2)).

1. Compter le nombre de valeurs positives dans une liste.

2. Comparer toutes les paires d’éléments d’une liste (tester si deux éléments sont égaux).

3. Accéder à tab[0] dans une liste de taille n.

4. Chercher un élément dans une liste triée par dichotomie.

Thématique 1 : Langage et Algorithmique | Chapitre 3 : La complexité d’un algorithme 10

	Thématique 1 : Langage et Algorithmique
	Thématique 1 : Langage et Algorithmique
	Chapitre 3 : La complexité d'un algorithme
	Chapitre 3 : La complexité d'un algorithme
	Pourquoi parler de complexité ?
	Quest-ce que la complexité ?
	Taille de l'entrée et modèle de coût
	Compter des opérations
	Meilleur cas, pire cas, cas moyen
	Notation O() : garder l'ordre de grandeur
	Ordres de grandeur classiques (à connaître)

