
Seconde — Année 2025/2026 M. Déhais

Langage et

Programmation
Chap 02

Programmer sous
condition

2.1 Les booléens

Dans la vie courante, on prend des décisions en fonction d’une situation : « s’il pleut, je
prends un parapluie ».

En programmation, c’est pareil : on exécute certaines instructions seulement si une condition
est vraie. Avant de pouvoir tester des conditions, il faut pouvoir exprimer la notion de vrai ou de
faux.

[Les types de base
Dans le chapitre 1, nous avons vu les types de base suivant :

— int : nombres entiers

1 -3, 0, 42

— float : nombres à virgule

1 3.14, -0.5

— str : chaînes de caractères

1 "NSI","Bonjour"

— bool : valeurs logiques

1 True,False

Ce chapitre permet d’expliquer comment fonctionne le type bool.

Définition 1 — Booléen

Une valeur booléenne, c’est-à-dire de type bool, ne peut prendre que deux valeurs : True
(vrai) ou False (faux).

Thématique 0 : Langage et Programmation | Chapitre 2 : Programmer sous condition 1

Seconde — Année 2025/2026 M. Déhais

Exemple 1

Quelques expressions qui produisent un booléen :

1 >>> print(5 > 2)
2 True

3 >>> print(3 == 4)
4 False

5 >>> test = "NSI" != "SNT"
6 >>>print(test)
7 True

Exercice 1 — Vrai ou faux?

Dire si chaque expression vaut True ou False.

1 3 < 3
2 7 >= 2*4
3 "python" == "Python"
4 10 % 2 == 0
5 7 == "7"

Correction :

— 3 < 3 : False

— 7 >= 2*4 (7 >= 8) : False

— "python" == "Python" : False (les majuscules/minuscules comptent)

— 10 % 2 == 0 : True (10 est bien divisible par 2)

— 7 == "7" : False (un entier et une chaîne ne sont pas égaux)

Le tableau suivant récapitule les différents opérateurs qui permettent d’obtenir des valeurs
booléennes.

Comparaison Sens

== égal à

!= différent de

< strictement inférieur à

<= inférieur ou égal à

> strictement supérieur à

>= supérieur ou égal à

Thématique 0 : Langage et Programmation | Chapitre 2 : Programmer sous condition 2

Seconde — Année 2025/2026 M. Déhais

. Attention

Le symbole = désigne l’affectation, alors que le symbole == désigne la comparaison.

2.2 Tester des conditions

En programmation, il ne suffit pas toujours d’exécuter les instructions les unes après les
autres.

Souvent, on veut que l’ordinateur prenne une décision en fonction d’une condition : « si la
température est trop basse, afficher un message d’alerte », « si un nombre est pair, écrire
"pair" », etc.

Pour cela, on utilise la structure conditionnelle if, qui permet de tester une situation et
d’exécuter un bloc d’instructions uniquement si la condition est vraie.

Définition 2 — Instruction if

La structure de base de l’instruction if est :

1 if condition:
2 bloc1
3 ...

— On termine la ligne par le symbole :

— On indente (décale à droite).

Le programme ci-dessus se lit comme : "Si la condition est vraie, alors on exécute le bloc
d’instruction bloc1".

Exemple 2

1 temperature = 3
2 if temperature <= 5:
3 print("Couvrez-vous !")

Thématique 0 : Langage et Programmation | Chapitre 2 : Programmer sous condition 3

Seconde — Année 2025/2026 M. Déhais

Exercice 2 — Premier test

Écrire un programme qui crée une variable x qui vaut 12 puis qui affiche "pair" si x est
divisible par 2.
Correction :

1 x = 12
2 if x % 2 == 0:
3 print("pair")

Écrire un programme qui crée une variable y qui vaut 27 puis qui affiche "impair" si y n’est
pas divisible par 2.
Correction :

1 y = 27
2 if y % 2 != 0:
3 print("impair")

Avec un simple if, on peut choisir d’exécuter un bloc d’instructions seulement si une condition
est vraie. Mais parfois, on veut aussi préciser ce qui doit se passer quand la condition n’est pas
vérifiée. Par exemple : « si la température est basse, je mets un manteau ; sinon, je n’en mets
pas ». C’est le rôle du mot-clé else.

2.3 Rajouter un cas

Définition 3

La branche else s’exécute quand la condition est fausse :

1 if condition: # si condition est vraie
2 bloc1 #alors on exécute bloc1

3 else: #sinon

4 bloc2 #alors on exécute bloc2

5

Thématique 0 : Langage et Programmation | Chapitre 2 : Programmer sous condition 4

Seconde — Année 2025/2026 M. Déhais

Exemple 3

1 age = 18
2 if age >= 18:
3 print("Majeur")
4 else:
5 print("Mineur")

Exercice 3 — Positif / négatif / nul

Créer une variable x qui vaut un entier de votre choix.
Correction (exemple) :

1 x = -3 # par exemple
2

3 if x > 0:
4 print("positif")
5 elif x < 0:
6 print("négatif")
7 else:
8 print("nul")

Afficher "positif" ou "négatif" selon le cas (et éventuellement "nul" si x = 0).

2.4 Rajouter plusieurs cas

La structure if ... else permet déjà de distinguer deux cas possibles. Cependant, dans
de nombreux problèmes, il existe plus de deux situations à traiter. Par exemple : attribuer une
mention selon une note ("Très bien", "Bien", "Assez bien", "Passable"). Dans ce cas, on
peut enchaîner plusieurs conditions grâce au mot-clé elif, qui signifie « sinon si ».

Thématique 0 : Langage et Programmation | Chapitre 2 : Programmer sous condition 5

Seconde — Année 2025/2026 M. Déhais

Définition 4

L’instruction elif signifie « sinon si » (else + if). On peut en enchaîner plusieurs!

1 note = 15
2 if note >= 16:
3 mention = "Très bien"
4 elif note >= 14:
5 mention = "Bien"
6 elif note >= 12:
7 mention = "Assez bien"
8 else:
9 mention = "Passable"

10 print(mention)

Exercice 4 — Grille tarifaire

Réaliser un programme qui crée une variable age et affiche le prix d’un billet selon la valeur
de la variable :

— moins de 12 ans : 6€;

— de 12 à 17 ans : 8€;

— 18 ans et plus : 10€.

Correction :

1 age = 14 # exemple
2

3 if age < 12:
4 prix = 6
5 elif age < 18:
6 prix = 8
7 else:
8 prix = 10
9

10 print(prix)

2.5 Opérateurs logiques

Jusqu’ici, nous avons vu que les comparaisons renvoient une valeur booléenne (True ou
False).
Dans un programme, il est souvent nécessaire de combiner plusieurs conditions : « je peux

Thématique 0 : Langage et Programmation | Chapitre 2 : Programmer sous condition 6

Seconde — Année 2025/2026 M. Déhais

prendre le train si j’ai un billet et si le train n’est pas annulé », ou encore « je prends un
parapluie s’il pleut ou s’il neige ».

ò Opérateurs logiques

Pour exprimer des combinaisons logiques, Python met à disposition trois opérateurs : and, or
et not.

Opérateur Effet

and vrai si les deux conditions sont vraies

or vrai si au moins une est vraie

not inverse True ↔ False

Exemple 4

1 >>> meteo = "pluie"
2 >>> parapluie = (meteo == "pluie") or (meteo == "neige")
3 >>> print(parapluie)
4 True

1 >>> a_billet = True
2 >>> train_annule = False

3 >>> peut_voyager = a_billet and (not train_annule)
4 >>> print(peut_voyager)
5 True

Exercice 5 — Intervalle

Écrire un programme qui teste si x n’appartient pas à l’intervalle [12; 27[.
x est dans l’intervalle [12; 27[si x est plus grand que 12 et strictement plus petit que 27.
Correction :

1 x = 30 # exemple
2

3 if x < 12 or x >= 27:
4 print("x n'est pas dans l'intervalle [12; 27[")
5 else:
6 print("x est dans l'intervalle [12; 27[")

Thématique 0 : Langage et Programmation | Chapitre 2 : Programmer sous condition 7

Seconde — Année 2025/2026 M. Déhais

Exercice 6 — Maximum

Etant donné trois variables entières x, y et z, écrire un programme qui affiche la plus petite
des trois valeurs. Il y a trois cas possibles.
Correction :

1 x = 5
2 y = 12
3 z = -3
4

5 if x <= y and x <= z:
6 print(x)
7 elif y <= x and y <= z:
8 print(y)
9 else:

10 print(z)

Thématique 0 : Langage et Programmation | Chapitre 2 : Programmer sous condition 8

	Thématique 0 : Langage et Programmation
	Thématique 0 : Langage et Programmation
	Chapitre 2 : Programmer sous condition
	Chapitre 2 : Programmer sous condition
	Les booléens
	Tester des conditions
	Rajouter un cas
	Rajouter plusieurs cas
	Opérateurs logiques

